

F

RESEARCH & INNOVATION PROGRAMME ON RAW MATERIALS TO FOSTER CIRCULAR ECONOMY

Acronym: ERA-MIN 2 Title: Implement a European-wide coordination of research and innovation programs on raw materials to strengthen the industry competitiveness and the shift to a circular economy Grant Agreement number: 730238 Funding scheme: ERA-NET COFUND Start date: 1st December 2016 Duration: 60 months

DELIVERABLE D7.4

LIST OF FUNDED PROJECTS CALL 2018

WP 7: Joint Calls without EU co-funding Task 7.3: Implementation of joint call(s) Task Leader: Vinnova Lead beneficiary: Vinnova Type: Website Dissemination level: Public Author(s): Susanne Gylesjö (Vinnova) and Dina Carrilho (FCT) Due date: M34 Actual submission date: M34

ERA-MIN 2 comprises a progressive, pan-European network of 21 public research funding organisations from 18 countries/regions (Argentina, Belgium-Flanders, Brazil, Chile, Finland, France, Germany, Ireland, Italy, Poland, Portugal, Romania, Slovenia, South Africa, Spain, Spain-Castilla y Léon, Sweden and Turkey).

Built on the experience of the EU project ERA-MIN (2011-2015), **ERA-MIN 2** aims to enhance and strengthen the coordination of research and innovation programmes in the field of non-energy, non-agricultural raw materials (construction, industrial and metallic minerals) to support the European Innovation Partnership on Raw Materials, the EU Raw Materials Initiative and further develop the raw materials sector, in Europe and globally, through funding of transnational research and innovation (R&I) activities.

ERA-MIN 2 will support demand driven research on primary and secondary resources, and substitution of critical raw materials under a circular economy approach, to give the opportunity to the R&I community to apply to world-wide coordinated funding, gaining access to leading knowledge and new markets, while reducing fragmentation of R&I funding across Europe and globally. This will be achieved through one EU co-funded call for R&I proposals in 2017 and two additional calls, in 2018 and in 2019, designed and developed specifically for the non-energy, non-agricultural raw materials sector.

Publishable summary: The report contains the list of the 12 projects selected for funding under ERA-MIN Joint Call 2018 without EU co-funding. It includes the call statistics, data on each project and their publishable abstracts. This information is public and available at the ERA-MIN 2 website.

TABLE OF CONTENTS

Contents

1	Int	roduction	. 4
2	Ca	II statistics	. 5
	2.1	Statistics of submitted proposals	. 6
	2.2	Statistics of funded projects	. 8
3	Pu	blishable abstracts of funded projects	13
4	Da	ta on funded projects	27

1 INTRODUCTION

A total of 24 funding organisations participated in the second **ERA-MIN Joint Call 2018** on "*Raw materials for the sustainable development and the circular economy*" launched on 31^{st} October 2018. This call was a one-step submission procedure and considered the lessons learnt from Call 2017 as well as input from the Advisory Board. Six new funding organisations from Brussels, Wallonia, Calabria, Greece, Slovakia and Québec joined this call of ERA-MIN 2 and a total budget of €14.5 million was committed. The proposal submission deadline was 31^{st} January 2019. Considering the ranking list of proposals as recommended by the Scientific Evaluation Board and the available national and regional public funds, the Call Steering Committee selected 12 transnational R&I projects for funding. The results were communicated on 4^{th} June and the projects will start November 2019 at the latest and run for 24-36 months.

More information on the Call topics and procedures is available at a dedicated webpage: <u>https://www.era-min.eu/joint-call/era-min-joint-call-2018</u> (Figure 1).

E R A-M I N 2 TO TOFES CIRCULAR BOXINGY ADDITION	IIs Results News	Events Publications	Partner search	Boost Partner are	a	
		161010101010		I di di di di di	12121020212	113.3.5.3.2
			VALITIEN.			
	<u>uuuu</u>	mann	unn	man	unn	min
		CALLS				
JOINT CALL 2018 Call Text FAQs	ERA-MIN Joi Raw materials for the sust Call calendar – up	tainable development and th	e circular economy			
JOINT CALL 2017 FAQs	October 31, 2018 November 20, 2018	Call Text publication Call for proposals open				
Funded projects	January 31, 2019	Call for proposals ends	2			

Figure 1 - ERA-MIN 2 webpage dedicated to ERA-MIN Joint call 2018

This report contains the information published at the ERA-MIN 2 website including call statistics, the funded projects and their publishable abstracts.

2 CALL STATISTICS

The **ERA-MIN Joint Call 2018** was focused on needs-driven research on non-energy, non-agricultural raw materials (metallic, construction and industrial minerals), with a circular economy approach.

The five main thematic areas of the call were based on the challenges and priorities identified in the ERA MIN Research Agenda covering both primary and secondary resources and substitution of Critical Raw Materials:

1. Supply of raw materials from exploration and mining;

- 1.1. Exploration
- 1.2. Mining operations
- 1.3. Mine closure and reclamation
- 2. Design;
 - 2.1. Product design for increased raw material efficiency
 - 2.2. Product design for reuse or extended durability of products
 - 2.3. Product design to promote recycling
 - 2.4. Product design for critical materials substitution

3. Processing, Production and Remanufacturing;

- 3.1. Increase resource efficiency in resource intensive production processes
- 3.2. Increase resource efficiency through recycling of residues or remanufacturing of used products and components
- 3.3. Increase resource efficiency using information and communication technologies (ICT)

4. Recycling and Re-use of End-of-Life products;

- 4.1. End-of-life products collection and (reverse) logistics
- 4.2. End-of-life products pre-processing: pre-treatment, dismantling, sorting, characterisation
- 4.3. Recovery of raw materials from End-of-life products
- 4.4. Increase recycling of End-of-Life products through information and communication technologies (ICT)

5. Cross-Cutting Topics.

- 5.1. New business models
- 5.2. Improvement of methods or data for environmental impact assessment
- 5.3. Social acceptance and trust/public perception of raw materials

The thematic areas are in line with the integrated strategy proposed in the EU Raw Materials Initiative, the Strategic Implementation Plan of the European Innovation Partnership on Raw Materials and the EU Circular Economy Package.

2.1 STATISTICS OF SUBMITTED PROPOSALS

The Joint Call had a one-stage submission process and generated submission of 51 proposals. After an eligibility check for compliance with both ERA-MIN 2 rules as well as national/regional regulations 40 proposals were sent to a centralised independent international scientific assessment.

The submitted 51 proposals involved 280 applicants of which 62 were enterprises (22%), requesting around €36 million of total public funds and total costs of €49 million (Figure 2).

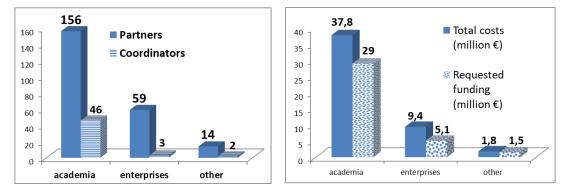
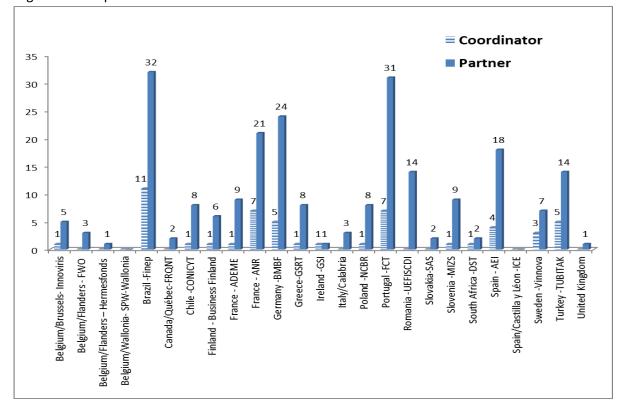



Figure 2 - Number of coordinators and partners, total costs and requested funding by type of organisation: academia, enterprises and other.

In Figure 3, the distribution of the applicants (coordinators and partners) by country or region/funding organisation is presented.

Figure 3 - Number of coordinators and partners in submitted proposals per country/region and funding organisation.

Figure 4 shows sub-topics addressed by the submitted proposals expressed as the percentages of the thematic area they belong to. Sub-topics in thematic area #4 and #3 are the ones most addressed and area #1 are the less addressed. It was possible to address more than one sub-topic per proposal.

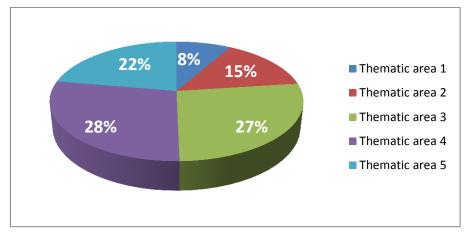


Figure 4- Percentage of each thematic area addressed in submitted proposals.

The distribution of thematic areas addressed by the submitted proposals per each funding organisation is shown in Figure 5.

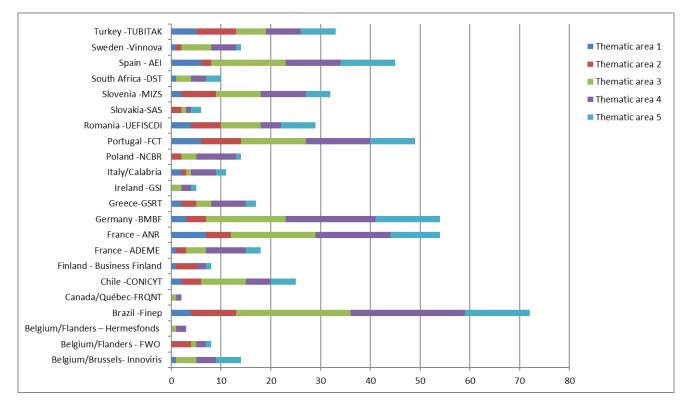


Figure 5 – Thematic area addressed by submitted proposals in each country/region/funding organisation.

2.2 STATISTICS OF FUNDED PROJECTS

12 transnational projects were selected and recommended for funding out of 40 eligible peer-reviewed proposals. These projects involved a total of 61 organisations of which 17 were enterprises. The total allocated public funding was €8.8 million and the total projects' costs were €12.7 million.

These 12 projects are funded by 15 out of 24 participating funding organisations.

Figure 6 shows the distribution of project coordinators and partners by type of organisation.

Figure 7 presents the distribution of totals costs and requested funding by type of organisation.

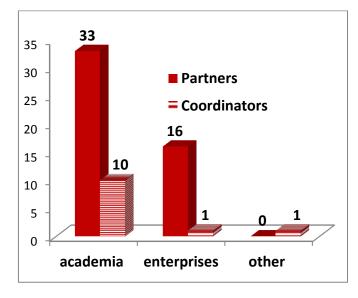


Figure 6 - Number of coordinators and partners in funded projects by type of organisation.

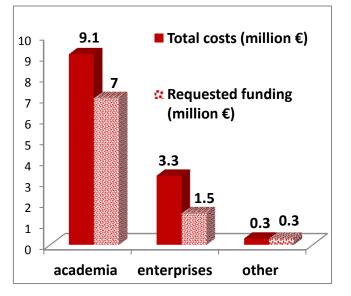


Figure 7 – Distribution of total costs and requested funding by type of organisation.

The number of transnational projects supported by each funding organisation from a country or region is presented in Figure 8. Germany, France (ANR) and Portugal support 4 transnational R&I projects each whereas Chile, France (ADEME) and Sweden support 3 projects each. It is worth noting that Calabria region who has participated for the first time is supporting two transnational R&I projects.

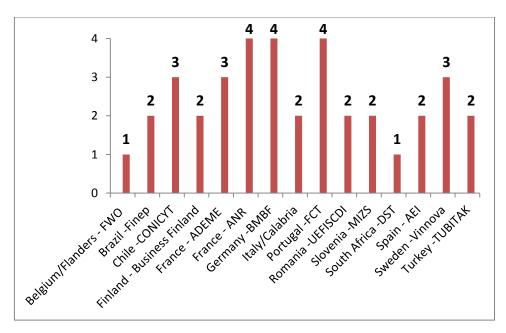


Figure 8 – Number of funded projects by country/region.

Figure 9 shows the number of beneficiaries as partners or coordinators in funded projects distributed by country/region.

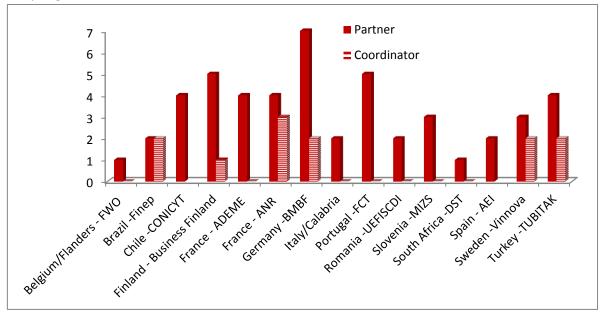


Figure 9 - Number of beneficiaries as coordinator and as partner in funded projects.

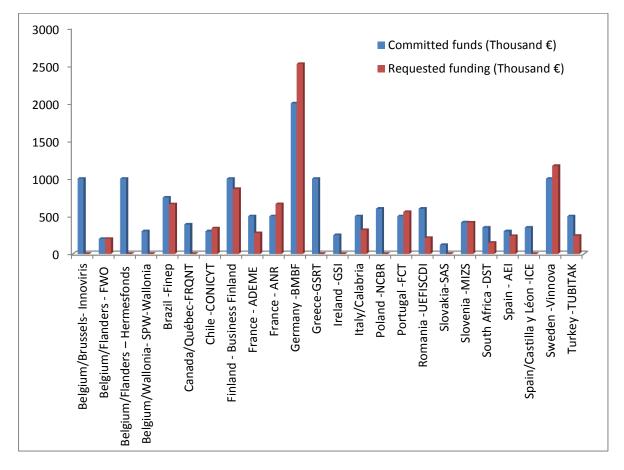


Figure 10 – Comparison between national/regional committed funds and requested funding by funded projects.

The distribution of requested funding by funded projects compared to the national/regional committed funds by the participating countries/regions can be seen in Figure 10.

The 12 selected projects were funded by 15 public research and innovation funding organisations of 8 EU countries, 2 EU region, 1 EU Associated Country and 3 non-EU countries.

All the thematic areas of the Joint call were addressed by one or more of the 12 funded projects (Figure 11). The thematic area #1 was the least addressed area in funded projects. The sub-topics covered by the funded projects are shown in Figure 12.

The thematic areas addressed by the funded projects in each country/region/funding organisation are presented in Figure 13.

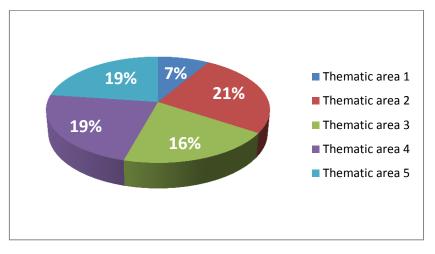


Figure 11 – Thematic areas in percentages addressed by the 12 funded projects.

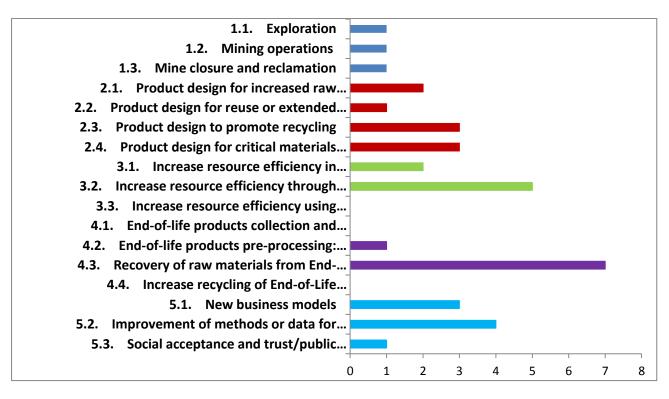


Figure 12- Sub-topics covered by the 12 funded projects.

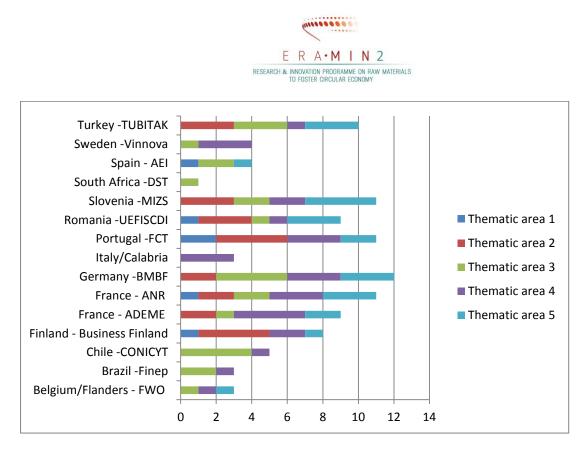


Figure 13- Thematic areas addressed by funded projects per funding organisation.

The overall success rate of the ERA-MIN Joint Call 2018 is 23.5 % (12/51) but varies for the 24 funding organisations.

All the information on the statistics of the ERA-MIN Joint Call is public and available at the ERA-MIN 2 website under the "Publications" menu.

3 PUBLISHABLE ABSTRACTS OF FUNDED PROJECTS

Following tables are public and available on the ERA-MIN 2 web site in the «News» menu, in the document "Publishable abstracts of the 12 projects funded under ERA-MIN Joint Call 2018". They can also be accessed through the « Call Results » menu.

Project acronym	MIWACUT
Project title	Investigating the microwave assisted cutting of carbonate rocks
Main topic	1. Supply of raw materials from exploration and mining
Sub-topics	1.2 Mining operations
Keywords	Carbonate rocks, microwave assisted cutting, specific energy, numerical modelling
Publishable abstract	In order to make the excavation of hard rocks possible by mechanical excavators except the tunnel boring machines (TBM) or to increase cutting rate and decrease wear rate during cutting very hard rocks, recently, the research on some innovative methods such as microwave assisted (MWA) rock cutting have been drawing attention. However, there is no currently MWA cutting machine used in the laboratory or in the field. In this study, the cuttability of carbonate rocks by an integrated MWA linear cutting machine will be investigated. Carbonate rocks are excavated by drilling and blasting that is a challenging method compared to the mechanical excavation. However, the mechanical excavation of carbonate rocks is generally impossible or inefficient. The objective of this proposal is to reveal the cuttability of carbonate rocks by MWA-continuous miners (CMs). The linear cutting tests without and with microwave assistance will be carried out on the samples from Turkey and Romania and the specific energy values will be determined. The performances of CMs will be estimated using the specific energy and discontinuity properties for without and with microwave assisted cutting conditions, and the results will be compared. Finally, the excavation cost will be calculated for CM without and with microwave assisted of the current drilling and blasting method. The partners of the proposal consist of one corporation and four engineering disciplines such as Mining Engineering, Mechanical Engineering, Geological Engineering, and
	Electrical and Electronic Engineering. After successfully completing the project, the suitability and the eco-efficiency of the MWA-CMs will be proven for the excavation of carbonate rocks. Using the MWA-CMs for the excavation of carbonate rocks will increase the efficiency and decrease the crushing and grinding costs. The environmental problems of blasting will disappear when using the MWA-CMs.
Participating organisations	Hacettepe University (Turkey) University of Petrosani (Romania)
organisations	University of Ankara (Turkey) PAMUKKALE UNIVERSITY (Turkey) Nigde Omer Halisdemir University (Turkey) KEMPAR Ltd. (Turkey)
Project duration	36 months
Total Costs	271.650 € Total Requested Funding 182.300 €

Page **13** of **33**

Project acronym	AUREOLE
Project title	tArgeting eU cRitical mEtals (Sb, W) and predictability of Sb-As-Hg envirOnmentaL
	issuEs
Main topic	1. Supply of raw materials from exploration and mining
Sub-topics	1.1 Exploration
	5.2 Improvement of methods or data for environmental impact assessment
Keywords	antimony, tungsten, resources, environment, assessment
Publishable	Antimony (Sb), a critical metal for Europe strategic for the European (EU) aircraft industry
abstract	& battery manufacturing plants, is widely used in industrial operations. Its most promising
	use may be for rechargeable Li- & Na-ion batteries. The project is based on disruptive
	concepts: i) new 3D large-scale metallogenic model integrating deep-seated processes to
	determine the spatial distribution of ore deposits; ii) the use of mineral prospectivity data
	weighted by surface data to determine the probability of environmental risk over large
	areas. Despite a high EU potential, the knowledge on Sb remains poorly constrained. EU
	remains under the threat of the Chinese supply. In parallel, metalloids (Sb, As, Hg) of
	geogenic origin are recognised as a global threat for human health. Then, a large-scale
	identification of these areas should be a priority. In this 3 year project, it will produce i) a
	new 3D metallogenic model that will contribute to the understanding of the mineralising
	processes; ii) a new understanding of surface processes that control the mobilisation &
	transport of metalloids; iii) a new large-scale mineral prospectivity and iv) a new large-scale
	environmental risk assessment by weighting mineral prospectivity with earth surface
	properties. The consortium of 4 leading research entities from 3 EU countries in the field of
	ore genesis and environmental risk assessment is completed by the Antea Group, whose
	core business is the analysis and quantification of environmental risk. The expected
	outcomes will result in high impact deliverables devoted to the targeting of new Sb
	deposits and a new large-scale environmental assessment maps for decision-making
	dealing with human health. Long term expected impacts would be an increase of EU Sb
	resources & sustainable supply. The project will provide new results to the SCRREEN,
	IMP@CT, FRAME projects and will interact with consortiums about electromobility such as the EU Lithium Institute and the EU Battery Alliance.
Participating	Bureau de Recherches Géologiques et Minières (France)
Participating organisations	Institut des Sciences de la Terre d'Orléans (ISTO) (France)
organisations	University of Castilla-La Mancha (Spain)
	University of Porto – FCUP (Portugal)
	Antea Group (France)
Project duration	36 months
Total Costs	1.113.697 € Total Requested Funding 454.122 €

Project acronym	MINECO			
Project title	New Eco-innovative Materials for Mining Infra			
Main topic	2. Design			
Sub-topics	1.3 Mine closure and reclamation			
	2.1 Product design for increased raw material efficiency			
	2.2 Product design for reuse or extended durability of products			
	2.3 Product design to promote recycling			
	2.4 Product design for critical materials substitution			
	5.2 Improvement of methods or data for environmental impact assessment			
Keywords	tailings cover systems, AMD, sustainability, alkali activation, backfill			
Publishable	The aim of the MINECO project is to develop new eco-innovative product solutions for			
abstract	mining infrastructures based on waste materials resulting from the mining operation,			
	thus contributing sustainable development.			
	Vast amounts of mining related materials, such as tailings and waste rock, are left behind			
	when the mine is finally closed, thus requiring sustainable treatments which, ideally,			
	should include very high recycling rates. Sulfidic mining waste, being generated from the			
	production of base metals as Cu, Pb, and Zn, represents the largest volume of extractive			
	waste in Europe (ca. 600 Mtn/yr), causing a serious potential Acid Mine Drainage (AMD)			
	hazard. In addition, the mining and processing of oil shale (OSA) produces about 18			
	Mtn/yr of mostly hazardous waste, in Estonia alone, and a total average of 25 Mtn/yr or			
	stainless-steel slags (argon oxygen decarburization and electric arc furnace, AOD/EAF) are			
	produced in Europe, most of which is landfilled. The proposed project intends to develop alternative methods to recycle sulfidic tailings			
	The proposed project intends to develop alternative methods to recycle sulfidic tailings,			
	for application in infrastructures and, also, in the construction and mining industries. The			
	combination of the excellent mechanical properties of the tailings with sustainable			
	binders will create integrated, technically competent and environmentally optimized			
	materials. The binders will be generated by the alkali activation technique, forming what is surrontly known as (alkali activated compute) or AAC			
Participating	is currently known as 'alkali activated cements', or AAC. Kajaani University of Applied Sciences (Finland)			
organisations	ECOnsulting Oy (Finland)			
organisations	UTAD- University of Trás-os-Montes e Alto Douro (Portugal)			
	Ecolan Oy (Finland)			
	Soilmetric Oy (Finland)			
	University of Porto - Faculty of Engineering (Portugal)			
Project duration	36 months			
Total Costs	1.285.861 € Total Requested Funding 779.187 €			

Project acronym	Sb-RECMEMTEC
Project title	Electro-electrodialysis technology on the copper minerals processing industry to the recovery of antimony from mining tailings and recycling the solution media
Main topic	3. Processing, Production and Remanufacturing
Sub-topics	3.1 Increase resource efficiency in resource intensive production processes
	3.2 Increase resource efficiency through recycling of residues or remanufacturing of used
	products and components
Keywords	Antimony, Electrodialysis, Copper Primary Production, Critical Raw Materials, Recycling
Publishable	The main objective of Sb-RECMEMTEC project is the recovery of antimony (Sb), a Critical
abstract	Raw Material, from wastes and effluents generated during the pyro- and
	hydrometallurgical processing of copper (Cu) using membrane separation processes
	(MSP): electrodialysis (ED) and electro-electrodialysis (EED). While Sb is of fundamental
	importance to newly developed technologies, it is generally obtained as a by-product of
	other metallic ores. Therefore, the current and future supply of Sb depends not only on Sb production, but also on the efficient recovery of other primary ores. Sb-RECMEMTEC
	will address the challenging subject of applying MSP in the processing of Cu-low-grade
	mining tailings and of Cu-sulphide minerals, not only to concentrate/purify the
	electrolytes, but also to recover Sb and acid solutions. ED/EED processes will be studied,
	using the circular economy approach, to the primary Cu-production, avoiding Sb losses
	and minimizing the generation of effluents. Sb-RECMEMTEC consortium consists of a
	multidisciplinary team, bringing together 5 partners from 3 countries (Chile, Brazil and
	Spain). Wastewaters, containing, besides Cu, elements of added-value, such as Sb, will be
	managed by the company TRANSDUCTO (Chile), being characterized by the USACH group
	(Chile). ED/EED processes will be evaluated with commercial membranes and with
	membranes produced at FEEVALE (Brazil). The UPV group (Spain) will carry out the
	scientific studies of the Sb electrorecovery on different cathodes and the characterization
	of the ion transport through the membranes provided by FEEVALE. The group of UFRGS
	(Brazil) will be responsible for performing small-scale pilot studies of ED/EED in order to
	demonstrate its feasibility for recovering acid solutions and Sb. USACH and TRANSDUCTO
	will incorporate the results obtained to implement a new production process. A high
	enhance innovation capacity is expected, since a new process will be incorporated
Participating	directly on the copper line production. Universidade Federal do Rio Grande do Sul (Brazil)
organisations	Universidad de Santiago de Chile (Chile)
organisacions	Universitat Politècnica de Valencia (Spain)
	ASPEUR / Feevale (Brazil)
	Transducto S.A. (Chile)
Project duration	36 months
Total Costs	1.185.595 € Total Requested Funding 577.900 €

Project acronym	MiCCuR
Project title	Microbial Consortia for enhanced Copper Recovery
Main topic	3. Processing, Production and Remanufacturing
Sub-topics	3.1 Increase resource efficiency in resource intensive production processes
Keywords	Chalcopyrite bioleaching, resource efficiency, pilot plant, copper recovery, microbial
	community
Publishable	Biomining is the biotechnological process for metal extraction from sulphidic ores. This
abstract	process exploits the ability of acidophilic microorganisms to catalyse chemical oxidation
	of insoluble metal sulphides to acid soluble sulphates. Bioleaching of copper minerals is
	usually performed in engineered heaps and this technology accounts for approximately
	15-20% of the worldwide copper production.
	Presently there is an increase in the European demand for metals. However, commercial
	biomining of chalcopyrite (CuFeS2; the largest copper resource in the world) is not
	extensively employed due to slow metal release and limited copper recoveries. Instead,
	chalcopyrite is generally treated by environmentally polluting and energy demanding ore
	concentration followed by high temperature metallurgical processes.
	In this study, two laboratory-scale, proof-of-concept experiments to increase the
	efficiency of industrial bioleaching of chalcopyrite will be scaled up to ultimately reach
	demonstration in an industrial pilot bioheap. The applicants will use stirred tank and
	column reactors to move to larger scale before the most promising strategy will be tested
	in the pilot plant. The consortium will cover the process in terms of innovation and
	research and will comprehensively study engineering, chemical, microbiological,
	molecular biological and 'omics' methods.
	This project contributes to the RMI and EIP strategies on raw materials through the
	enhanced resource efficiency achieved for both copper resources in Europe and those
	globally with potential to supply Europe. In achieving this, the project addresses the
	circular economy as well as the implementation of low carbon process options for copper
	recovery. By incorporating a German company and having two associated companies, the
	knowledge of these stakeholders will contribute to the progress in the project. In turn,
	this also results in new insights having a substantially greater probability to be applied in
	the mining sector.
Participating	Linnaeus University (Sweden)
organisations	Technische Universität Bergakademie Freiberg (Germany)
	Ruhr University Bochum (Germany)
	University of Cape Town (South Africa)
	Pontificia Universidad Católica de Chile (Chile)
	G.E.O.S. Ingenieurgesellschaft mbH (Germany)
Project duration	36 months
Total Costs	1.616.153 € Total Requested Funding 1.258.406 €

Project acronym	RedOxRec
Project title	Reduction/ Oxidation Recycling
Main topic	4. Recycling and Re-use of End-of-Life products
Sub-topics	3.2 Increase resource efficiency through recycling of residues or remanufacturing of used
	products and components
	4.3 Recovery of raw materials from End-of-life products
	5.1 New business models
Keywords	Decentralized Recycling, Noble metals, Mild hydrometallurgy, WEEE, Production Residues
Publishable	Our vision is to enable a more distributed recycling chain, where Small-Medium
abstract	Enterprises (SME), individual production plants and municipalities become the main
	stakeholders of the recycling process chain. This shift in the recycling paradigm hinges on
	the dissemination of green recycling solutions throughout the territory. The core-
	innovation is the development of a medium-scale, environmentally friendly and low-cost
	hydrometallurgical process for the extraction of noble metals from End-of-Life products
	(e.g. electronics waste). Based on this technological breakthrough, we expect to trigger
	multiple ramifications from the technical, economic, social and environmental point of view.
	The cornerstone of this new hydrometallurgical recycling process is a completely new
	concept for noble metals chemical extraction by exploiting the so-called transient
	dissolution. This mechanism is a well-known degradation mechanism for all
	electrochemical applications and, opposite to conventional hydrometallurgy, does not
	require extremely aggressive conditions, but only a repeating change in surface (electro-)
	chemical potential. We intend to transfer this, so far, the purely electrochemistry-related
	process to a chemical reactor (TRL 5) and to validate experimentally the process for real
	scrap, e.g., manufacturing refuse from electronics production.
	In order to assess the impact on the overall value chain, the project will deal with the
	evaluation of the recycling process in a decentralized network and the identification of
	the corresponding technological solutions for disassembly, pre-treatment and logistics. In
	conclusion, the data obtained the TRL5 reactor will serve as input data to verify the
	economic feasibility of our innovative chemistry and to assess the environmental benefits
	this new recycling scenario by means of state-of-the-art Life Cycle Costing and Analysis
	(LCC and LCA).
Participating	Robert Bosch GmbH (Germany)
organisations	Forschungszentrum Jülich GmbH (Germany)
	National Institute of Chemistry (Slovenia) University of Antwerp (Belgium/Flanders)
Project duration	36 months
Total Costs	1.619.617 € Total Requested Funding 1.132.835 €

Project acronym	NEXT-LIB				
Project title	Novel Circular Economic Approaches for Efficient Extraction of Valuables from				
	Spend Li-Ion Batteries 4. Recycling and Re-use of End-of-Life products				
Main topic					
Sub-topics	4.2 End-of-life products pre-processing: pre-treatment, dismantling, sorting,				
	characterisation				
	4.3 Recovery of raw materials from End-of-life products				
Keywords	Spent LIBs, Valuable Metals, Graphite Separation, Li Recovery, Recycling				
Publishable	The existing dominating technology applied in Europe is the Umicore process which is				
abstract	simple and efficient with main focus on recovery the high value metals like Co, Ni and Cu.				
	The other critic materials like lithium and graphite are lost. Lithium is diluted in a slag				
	phase while graphite and electrolyte are burnt to hazardous gases. The dominating				
	technology applied in China consists of shredding, thermal processing for removal of				
	electrolyte and binders followed by leaching processes. In both cases, the graphite is not				
	just lost it also causes to major difficulties for the subsequent metal recovery processes.				
	Shredding of LiB is another major challenging. Though a number of technologies are used				
	in commercial scale, they are often slow or have to be operated under a carefully				
	arranged inert system (like liquid N2 cooling, shredding in water etc) in order to minimize				
	the fire risk due to high content of flammable electrolyte in the LiBs. The NEXT-LIB project				
	has the intention to develop a number of new technologies to meet the challenges				
	addressed above which will enable safe shredding operation, possible electrolyte				
	recovery, graphite recovery and Li-enrichment by pyrometallurgical approaches etc. The				
	project aims for developing technologies for an over 20% increased overall recovery				
	efficiency comparing to the current processes. The project will be realized via a cross-				
	discipline approach with experts in material characterization, mineral processing, pyro-				
	and hydrometallurgy, sustainability analysis, from leading universities, research				
	institutes, SME, major battery recycler and metal producer located in Sweden, Finland,				
	France, Italy and Portugal. The project has an economic potential of at least 1 billion €, thereby a possibility to				
	create >2000 jobs for the EU and an energy saving potential of >1000 GWh on a global				
	perspective.				
Participating	Swerim AB (Sweden)				
organisations	Luleå University of Technology (Sweden)				
organisations	Extracthive (France)				
	INSTM- RU University Mediterranea of Reggio Calabria (Italy)				
	Geological Survey of Finland (GTK) (Finland)				
	CEA (France)				
	uRecycle Battery Materials Oy Filial i Sverige (Sweden)				
	Faculdade de Ciências da Universidade do Porto (Portugal)				
	Boliden (Finland)				
Project duration	36 months				
Total Costs	1.529.684 € Total Requested Funding 1.227.517 €				

Page **19** of **33**

Project acronym	Siderec
Project title	Siderophores assisted Biorecovery of Technology Critical Elements: Gallium (Ga), germanium (Ge) and indium (In) from end-of-life products
Main topic	4. Recycling and Re-use of End-of-Life products
Sub-topics	3.2 Increase resource efficiency through recycling of residues or remanufacturing of used
	products and components
	4.3 Recovery of raw materials from End-of-life products
Keywords	Technology critical elements, end-of-life products, circular economy, green processes, low concentrated wastewaters
Publishable	High techs such as communications, renewable energies, displays are heavily dependent
abstract	on metals such as germanium (Ge), indium (In) and gallium (Ga). These metals are used in
abstract	photovoltaics, fiber optics, liquid crystal displays – among others. The supply of these
	metals is essential for the continuous supply of high-tech devices. However, due to the
	export control and hoarding, the supply of these metals to the high-tech industry of
	Europe is not assured and hence, European Commission has listed these metals supply as
	critical.
	Recycling of these metals from their end-of-life (EOL) products is a way to overcome the
	shortage of these metals. However, there are no technologies available for recycling of
	these metals due to their low concentrations and presence of large number of
	contaminants. A highly selective and sensitive solvent, ligand or reaction is needed to
	recover these metals. Siderophores has been shown to bind selectively bind to Ga, In and
	Ge even when these metals are present in very low concentrations. Thus, exploiting of
	siderophores for these metals' recovery can be very interesting. However, no work has
	been carried out to recovery these metals from their EOL products using siderophores.
	There are two main challenges in the recovery of metals from their EOL products using
	siderophores. The challenges are 1) Right selection and production of siderophores, 2) Access of siderophores to the target metals in EOL products. Upon successful leaching of
	target metals and siderophore complexes, the decomplexation, and recovery of metals
	and siderophores will be carried out as by implementing the GaLlophore technology.
	This project aims to develop ambitious and highly innovative technology for the recovery
	of these critical elements. This project will fill the technology gap where no technology
	exists. This project will help in improving EU competitiveness in resource recovery and
	recycling.
Participating	Institut de Physique du Globe de Paris (France)
organisations	Universidad Catolica del Norte (Chile)
	Helmholtz-Zentrum Dresden-Rossendorf (Germany)
	ASA Spezialenzyme GmbH (Germany)
Project duration	36 months
Total Costs	835.325 € Total Requested Funding 781.285 €

Project acronym	LIMEX			
Project title	Innovative Membrane Extraction of Lithium for Spent Lithium-Ion Battery Recycling			
Main topic	4. Recycling and Re-use of End-of-Life products			
Sub-topics	4.3 Recovery of raw materials from End-of-life products			
Keywords	Lithium, Recovery, Battery Recycling, Membrane, Green Solvents			
Publishable	Lithium-ion batteries (LIBs) having a high energy-density are commonly used to provide			
abstract	power to consumer electronics and electric vehicles. In the last years, they have emerged			
	as crucial component of modern energy storage. The storage of renewable energy plays a			
	key role in the global shift toward a cleaner and more sustainable energy economy.			
	Therefore, the demand for lithium (Li), the essential ingredient for LIBs, is increasing			
	exponentially. In addition, the consumption of other metals for batteries, viz. cobalt and			
	nickel, also is increasing. It is well known that mining and ore processing has a negative			
	effect upon the environment. These activities generate a large amount of waste,			
	consume resources and can liberate harmful materials into the biosphere.			
	In this context, the LIMEX project proposes an innovative and clean technology for			
	recovering metals from secondary resources such as batteries. The overall objective is to			
	evaluate its technical feasibility and economic and environmental impacts when using			
	solvent extraction and membrane separation for the recovery of target metals from the			
	leach liquors formed during the recycling of spent LIBs. This objective constitutes a real			
	scientific and technical challenge due to complex matrices with different levels of metal concentrations.			
	Thus, LIMEX responds the axis N° 4 of the ERA-MIN 2 call "Recycling and Re-use of the			
	End-of-life products" and proposes a multidisciplinary approach combining organic			
	synthesis (Partner 2), solution chemistry (Partner 1, 2), membrane process design			
	(Partner 1, 3, 4) and environmental impact assessment (Partner 1, 4).			
Participating	CNRS (France)			
organisations	Chalmers University of Technology (Sweden)			
	University of Porto (Portugal)			
	Euro Dieuze Industrie (France)			
Project duration	36 months			
Total Costs	793.294 €Total Requested Funding578.389 €			

Project acronym	RECEMENT
Project title	Re-generating (raw) materials and end-of-life products for re-use in Cement/Concrete
Main topic	4. Recycling and Re-use of End-of-Life products
Sub-topics	 2.1 Product design for increased raw material efficiency 2.3 Product design to promote recycling 2.4 Product design for critical materials substitution 3.2 Increase resource efficiency through recycling of residues or remanufacturing of used products and components 4.3 Recovery of raw materials from End-of-life products 5.1 New business models 5.2 Improvement of methods or data for environmental impact assessment 5.3 Social acceptance and trust/public perception of raw materials
Keywords	Re-generation, construction debris, cement, recycling, circular economy
Publishable abstract	Understanding the complex reactions that occur upon cement (de)hydration is the key to re-generating end-of-life (EOL) materials as sources of cementitious minerals. The cement industry generates 8% of the total global CO2 emission, or 0.87 kg CO2 per kg of cement formed. However, it is the glue that enables concrete, which is ubiquitous in urban life. To reduce CO2 emission evolving during Portland clinker production, it can be replaced in part by supplementary cementitious material (SCM). Although the most common ones, fly ash and slag, have limited availability, urban demolition and mineral deposit quarries can be found everywhere, and these contain high percentages of potential SCMs. By developing mechanical and thermal treatment procedures to destabilize the pozzolanic-active phases, we can reactivate these zero-value remnants. We reduce the introduction of new raw materials sources into the value-chain of cement production, the CO2 emission, and the energy consumption, as well as reduce the adverse environmental impact of landfill contributions. The key innovation in RECEMENT is developing the regeneration of high SCM-content EOL materials, while the main objective is to replace at least 30% of the Portland clinker in cement with re-generated SCMs. We aim to produce recipes for re-generated cement blends in mortar with equivalent performance and durability.
	The team responsible for this interdisciplinary project has precisely the broad range of expertise for realizing the engineering of cement—geochemical and mineralogical understanding of reject materials and advanced (in-situ) structure-chemistry characterization of pozzolanic reaction pathways and their final products. The output of RECEMENT is foreseen to have a high impact as a paradigm for transforming locally sourced end-of-life materials into remanufactured cement, i.e. from a linear into a circular concrete economy.
Participating organisations	Sabanci University (Turkey) University of Ljubljana (Slovenia) Jozef Stefan Institute (Slovenia) University Politehnica from Bucharest (Romania)

Project duration	36 months						
Total Costs	482.720€	Total Requested Funding	482.720€				

Project acronym	LICOBAT										
Project title	Lithium and Cobalt recovery from batteries coming from the reverse logistics chain of WEEE										
Main topic	4. Recycling and Re-use of End-of-Life products										
Sub-topics	4.3 Recovery of raw materials from End-of-life products										
Keywords	Lithium, Cobalt, Batteries, Raw Material, Recovery										
Publishable	In 2013, approximately 200,000 tonnes of portable batteries were placed on the EEA and										
abstract	Swiss market, with this high volume and short battery life increasing the disposal flow of										
	end-of-life batteries. In Brazil about 400 million per year of smartphone batteries are										
	sold, of which only 1% is destined correctly. The rest ends up in the common waste,										
	putting at risk public health due to the risks of contamination with heavy metals. In this										
	context, the central issue is represented by the development of processes that allow the										
	recovery of the material from batteries at the end of life, the main objective of this										
	project is to drive the Lithium-ion battery reverse chain toward a circular economy, with										
	a focus on the recovery of Lithium and Cobalt.										
	The scientific basis of the project is the patented hydrometallurgical process (European										
	patent EP2450991) by Eco Recycling srl. The proposed process integrates mechanical pre-										
	treatment with a chemical (hydrometallurgical) treatment route to recover plastics,										
	ferrous and non-ferrous metals. The process will be demonstrated by the construction										
	and operation of the pilot plant with capacity to process 100 kg of batteries per day. For										
	this, the consortium of this project has specialists in mechanical processes,										
	hydrometallurgical processes, reverse logistics and entrepreneurs with great experience in the solid waste management market.										
	This project also aims at a positive social impact, important in emerging countries such as										
	Brazil, where part of WEEE reverse logistics is carried out by Recyclable Material										
	Collectors, people who work manually collecting waste materials without healthcare and										
	security and social dignity.										
Participating	Centro da Tecnologia da Informação 'Renato Archer' (Brazil)										
organisations	BIOSYS - Gestão em Meio Ambiente Ltda (Brazil)										
	Ecosistem srl (Italy)										
Project duration	30 months										
Total Costs	855.241 € Total Requested Funding 545.854 €										

Project acronym	SupplyPBM
Project title	Securing the Supply chain for rare earth Polymer-Bonded Magnets by recycling
Main topic	4. Recycling and Re-use of End-of-Life products
Sub-topics	 2.3 Product design to promote recycling 2.4 Product design for critical materials substitution 3.2 Increase resource efficiency through recycling of residues or remanufacturing of used products and components 4.3 Recovery of raw materials from End-of-life products 5.1 New business models 5.2 Improvement of methods or data for environmental impact assessment
Keywords	recycling of rare earth permanent magnets; polymer-bonded magnets; environment- friendly biopolymers; business model for recycled magnets; Life Cycle Assessment analysis for recycled magnets;
Publishable	The main objective of the project SupplyPBM is the demonstration of a circular economy
abstract	route for rare earth polymer-bonded magnets. Scrap sintered permanent magnets from End-of-Life (EoL) products will be recycled by rapid solidification and processed to polymer-bonded magnets. Moreover, technologies suitable for recycling of polymer- bonded magnets in a continuous supercritical hydrothermal reactor will be investigated. The aim is to produce polymer-bonded magnets out of recycled magnet powder with the same performance than magnets made from primary material, so that entering the market by these magnets does not require any adaption of the products or systems themselves. Additionally, to the recycling aspect of polymer-bonded magnets, the bio- design of these magnets is addressed, by the first time use of bio-polymers in permanent magnet applications. Finally, the environmental impact of the production and recycling of polymer-bonded magnets will be investigated by a Life Cycle Assessment analysis. SupplyPBM ambitions to achieve a major breakthrough on three technical levels. First, a pathway for recycling of permanent magnets from EoL application by melt-spinning and subsequent production to polymer-bonded magnets will be shown. Second, the recycling of polymer-bonded magnets in a high pressure / high temperature reactor in a continuous supercritical hydrothermal reactor will be demonstrated. Third, bio-based polymers will be used in polymer-bonded magnets for the first time, reducing the impact of polymers from fossil resources. The project SupplyPBM aims at closing materials cycles by recovering and back-feeding valuable rare earth materials to an industrial magnet production within the EU. Within this project, a linear supply chain will be turned into a closed material loop.
Participating	Fraunhofer ISC, Project Group IWKS (Germany)
organisations	Veekim AG (Germany) ARELEC (France) ICMCB / CNRS (France) Université de Bordeaux (ISM) (France)
Project duration	24 months
Total Costs	1.090.666 € Total Requested Funding 834.370 €

4 DATA ON FUNDED PROJECTS

Following tables are public and available at the ERA-MIN 2 web site in the « Call Results » menu. Under each project acronym, there is a link to the publishable abstract.

Main call topic	Sub-topic areas	Project acronym/ abstract	Project title	Coordinator (partner 1) and consortium partners	Participating countries - Funding organisations	Duration	Total Costs	Total Requested Funding
				Hacettepe University	Turkey - TUBITAK			
				University of Petrosani	Romania - UEFISCDI			
			Investigating the microwave assisted	University of Ankara	Turkey - TUBITAK		271.650€	
	1.2 Mining operations	MIWACUT	cutting of carbonate	PAMUKKALE UNIVERSITY	Turkey - TUBITAK	36 months		182.300€
			rocks	Nigde Omer Halisdemir University	Turkey - TUBITAK			
1. Supply of raw materials from				KEMPAR Ltd.	Turkey - TUBITAK			
exploration and mining	1.1 Exploration5.2 Improvement of methods or data for environmental impact assessment	AUREOLE	tArgeting eU cRitical mEtals (Sb, W) and predictability of Sb-As- Hg envirOnmentaL issuEs	Bureau de Recherches Géologiques et Minières	France - ANR		1.113.697€	
				Institut des Sciences de la Terre d'Orléans (ISTO)	France - ANR			
				University of Castilla-La Mancha	Spain - AEI	36 months		454.122€
				University of Porto - FCUP	Portugal - FCT			
				Antea Group	France - ANR			

Main call topic	Sub-topic areas	Project acronym/ abstract	Project title	Coordinator (partner 1) and consortium partners	Participating countries - Funding organisations	Duration	Total Costs	Total Requested Funding
	1.3 Mine closure and reclamation			Kajaani University of Applied Sciences	Finland – Business Finland			
	2.1 Product design for increased raw material efficiency			ECOnsulting Oy	Finland – Business Finland			
	2.2 Product design for reuse or extended durability of products		New Eco-innovative	UTAD- University of Trás-os- Montes e Alto Douro	Portugal - FCT			
2. Design	 2.3 Product design to promote MINECO recycling 2.4 Product design for critical 	Materials for Mining Infra	University of Porto - Faculty of Engineering	Portugal - FCT	36 months	1.285.861€	779.187€	
	materials substitution			Ecolan Oy	Finland – Business Finland			
	5.2 Improvement of methods or data for environmental impact assessment			Soilmetric Oy	Finland – Business Finland			
			Electro-electrodialysis	Universidade Federal do Rio Grande do Sul	Brazil - Finep			
3. Processing,	nd 3.2 Increase resource efficiency through recycling of residues or remanufacturing of used	ource intensive production esses crease resource efficiency gh recycling of residues or Sb- RECMEMTEC	technology on the copper minerals processing industry to	Universidad de Santiago de Chile	Chile - CONICYT	36 months	1.185.595€	577.900€
Production and Remanufacturing				Universitat Politècnica de Valencia	Spain - AEI			
				ASPEUR / Feevale	Brazil - Finep			
	products and components			Transducto S.A.	Chile - CONICYT			

Main call topic	Sub-topic areas	Project acronym/ abstract	Project title	Coordinator (partner 1) and consortium partners	Participating countries - Funding organisations	Duration	Total Costs	Total Requested Funding
				Linnaeus University	Sweden - Vinnova			
			Microbial Consortia for enhanced Copper Recovery	Technische Universität Bergakademie Freiberg	Germany - BMBF / Juelich		1.616.153€	
3. Processing,	3.1 Increase resource efficiency			Ruhr University Bochum	Germany - BMBF / Juelich			1.258.406 €
Production and Remanufacturing	in resource intensive production processes	MiCCuR		University of Cape Town	South Africa - DST	36 months		
				Pontificia Universidad Católica de Chile	Chile - CONICYT			
				G.E.O.S. Ingenieurgesellschaft mbH	Germany - BMBF / Juelich			
	of- products and components 4.3 Recovery of raw materials from End-of-life products		Reduction/ Oxidation Recycling	Robert Bosch GmbH	Germany - BMBF / Juelich			1.132.835€
4. Recycling and Re-use of End-of-				Forschungszentrum Jülich GmbH	Germany - BMBF / Juelich	_ 36 months	1.619.617€	
Life products				National Institute of Chemistry	Slovenia - MIZS			
	5.1 New business models			University of Antwerp	Belgium / Flanders - FWO			

Page **30** of **33**

Main call topic	Sub-topic areas	Project acronym/ abstract	Project title	Coordinator (partner 1) and consortium partners	Participating countries - Funding organisations	Duration	Total Costs	Total Requested Funding
				Swerim AB	Sweden - Vinnova	_		
				Luleå University of Technology	Sweden - Vinnova			
				Extracthive	France - ADEME			
	 4.2 End-of-life products pre- processing: pre-treatment, dismantling, sorting, characterisation 4.3 Recovery of raw materials from End-of-life products 	NEXT-LIB	Novel Circular Economic Approaches for Efficient Extraction of Valuables from Spend Li-Ion Batteries	INSTM- RU University Mediterranea of Reggio Calabria	Italy – Calabria Region		1.529.684 €	1.227.517€
				Geological Survey of Finland (GTK)	Finland – Business Finland	36 months		
				CEA	France - ADEME			
4. Recycling and Re-use of End-of-				uRecycle Battery Materials Oy Filial i Sverige	Sweden - Vinnova			
Life products				Faculdade de Ciências da Universidade do Porto	Portugal - FCT			
				Boliden	Finland – Business Finland			
	 3.2 Increase resource efficiency through recycling of residues or remanufacturing of used products and components 4.3 Recovery of raw materials from End-of-life products 		Siderophores assisted Biorecovery of	Institut de Physique du Globe de Paris	France - ANR		835.325€	781.285€
		Siderec	Technology Critical Elements: Gallium	Universidad Catolica del Norte	Chile - CONICYT	36 months		
		Siderec	(Ga), germanium (Ge) and indium (In) from end-of-life products	Helmholtz-Zentrum Dresden- Rossendorf	Germany - BMBF / Juelich			
				ASA Spezialenzyme GmbH	Germany - BMBF / Juelich			

Main call topic	Sub-topic areas	Project acronym/ abstract	Project title	Coordinator (partner 1) and consortium partners	Participating countries - Funding organisations	Duration	Total Costs	Total Requested Funding
			Innovative Membrane	CNRS	France - ANR			
	4.3 Recovery of raw materials from End-of-life products	LIMEX	Extraction of Lithium	Chalmers University of Technology	Sweden - Vinnova	36 months	793.294 €	578.389€
	from End-or-life products		for Spent Lithium-Ion Battery Recycling	University of Porto	Portugal - FCT			
			buttery necycling	Euro Dieuze Industrie	France - ADEME			
	2.1 Product design for increased raw material efficiency2.3 Product design to promote recycling2.4 Product design for critical		Re-generating (raw) materials and end-of- life products for re-use in Cement/Concrete	Sabanci University	Turkey - TUBITAK	- 36 months	482.720€	
4. Recycling and Re-use of End-of- Life products	materials substitution 3.2 Increase resource efficiency through recycling of residues or remanufacturing of used products and components			University of Ljubljana	Slovenia - MIZS			482.720 €
	4.3 Recovery of raw materialsfrom End-of-life products5.1 New business models5.2 Improvement of methods or			Jozef Stefan Institute	Slovenia - MIZS			402.720 0
	data for environmental impact assessment 5.3 Social acceptance and trust/public perception of raw materials			University Politehnica from Bucharest	Romania - UEFISCDI			

Page **32** of **33**

Main call topic	Sub-topic areas	Project acronym/ abstract	Project title	Coordinator (partner 1) and consortium partners	Participating countries - Funding organisations	Duration	Total Costs	Total Requested Funding
			Lithium and Cobalt recovery from batteries coming from the reverse logistics	Centro da Tecnologia da Informação 'Renato Archer'	Brazil - Finep			
	4.3 Recovery of raw materials from End-of-life products	LICOBAT		BIOSYS - Gestão em Meio Ambiente Ltda.	Brazil - Finep	30 months	855.241€	545.854 €
			chain of WEEE	Ecosistem srl	Italy – Calabria Region			
	2.3 Product design to promote recycling2.4 Product design for critical	for critical on ce efficiency f residues or used onents	Securing the Supply chain for rare earth Polymer-Bonded Magnets by recycling	Fraunhofer ISC, Project Group IWKS	Germany - BMBF / Juelich	24 months	1.090.666€	834.370€
4. Recycling and Re-use of End-of- Life products	materials substitution 3.2 Increase resource efficiency through recycling of residues or			Veekim AG	Germany - BMBF / Juelich			
	remanufacturing of used products and components			ARELEC	France - ADEME			
	4.3 Recovery of raw materialsfrom End-of-life products5.1 New business models			ICMCB / CNRS	France - ANR			
	5.2 Improvement of methods or data for environmental impact assessment			Université de Bordeaux (ISM)	France - ANR			

