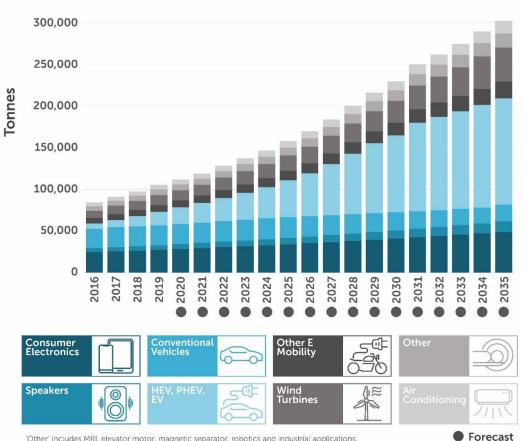


RESEARCH & INNOVATION PROGRAMME ON RAW MATERIALS TO FOSTER CIRCULAR ECONOMY

MaXycle

A novel circular economy for sustainable RE-based magnets


Coordinator: Spomenka Kobe, Jožef Stefan Institute

ERA-MIN 2 Final Conference, virtual, 18th-19th November, 2021

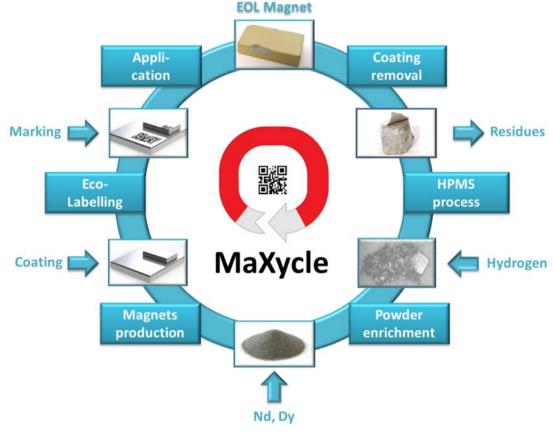
Recycling of EOL magnets – a rout to strategic raw materials

Forecast NdFeB Magnet Consumption

'Other' includes MRI, elevator motor, magnetic separator, robotics and industrial applications. Source: CRU – Rare Earth Report 2020

For the independence of Europe and the rest of the world from China which controls 97% of raw materials,

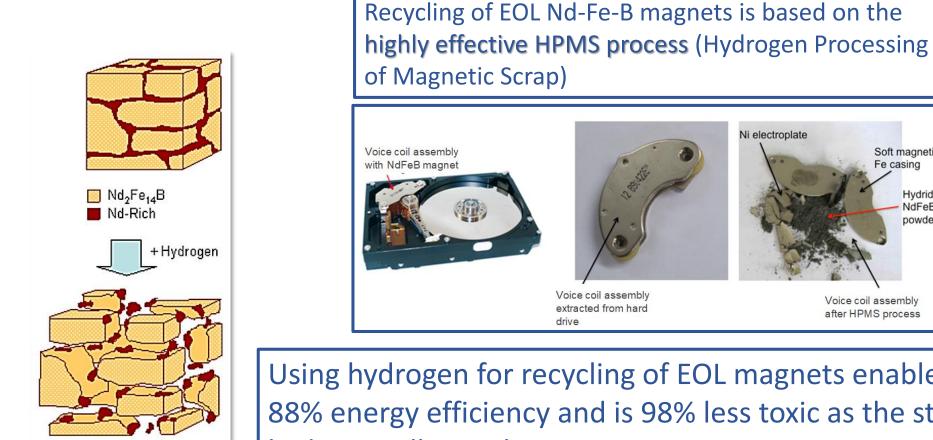
Is recycling of EOL Nd-Fe-B magnets mandatory.



MaXycle - A novel circular economy for sustainable RE-based magnets

- Definition of standardised quality criteria for EOLM and a classification system for contamination levels to categorise products by pre-processing requirements.
- Development of a labelling system for newly produced RE magnets to identify different magnet types and qualities, including provision of reliable and durable marking methods.

Partners:

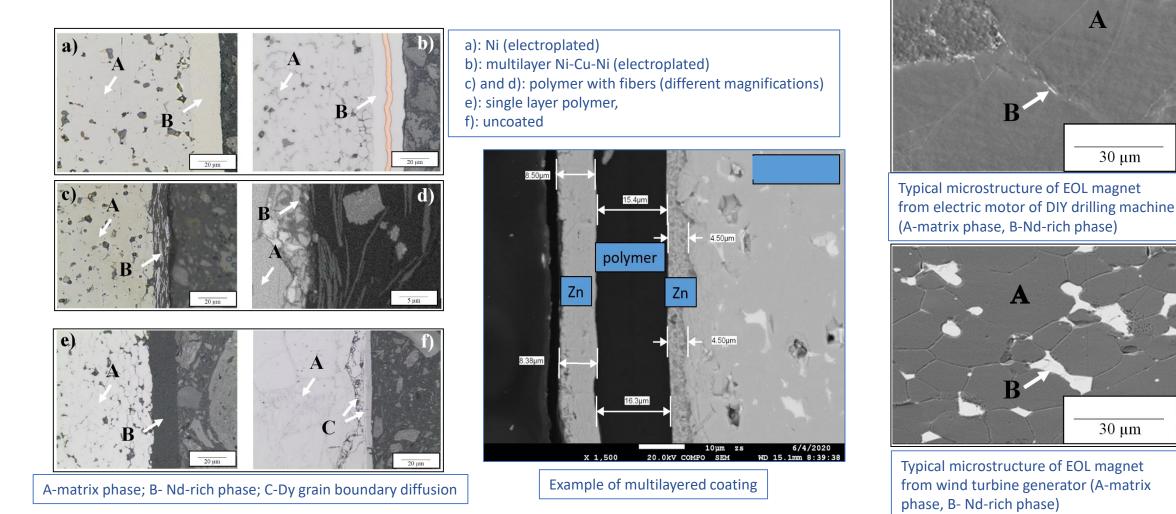


MaXycle – Approach: Not based on conventional recycling by chemical or pyrometallurgical processes

Ni electroplate Soft magnetic

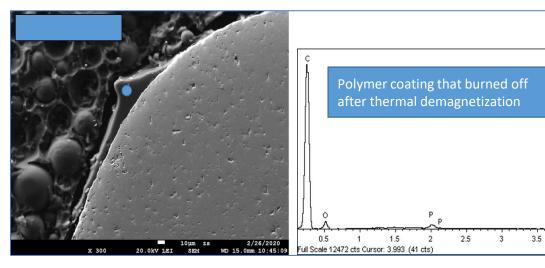
Fe casing Hydrided NdFeB powder Voice coil assembly after HPMS process

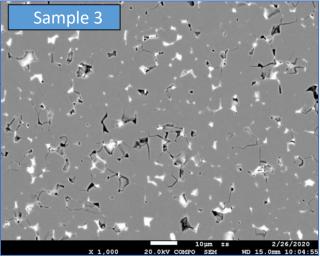
Using hydrogen for recycling of EOL magnets enables 88% energy efficiency and is 98% less toxic as the standard hydrometallurgical process


Walton, A., Williams, A.J., Speight, J.D. and Harris, I.R.; US Patent No. US 13/169,839. "Magnet recycling" (Priority 2010, Application 2012, granted 2014)

• Walton, A., et al..; The Use of Hydrogen to Separate and Recycle Neodymium-Iron-Boron-type Magnets from Electronic Waste, Journal of Cleaner Production 104 (2015) p236-241. DOI: 10.1016/j.jclepro.2015.05.033

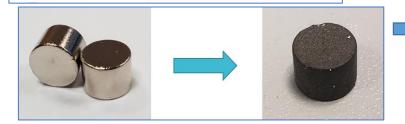
MaXycle – RESULTS: Coating of Nd-Fe-B magnets: analyses – few examples

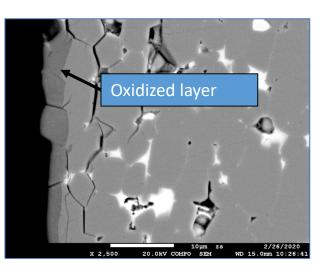

C. Burkhardt, A. Lehmann, B. Podmiljšak, S. Kobe, A systematic classification and labelling approach to support a circular economy ecosystem for NdFeB-type magnet. Journal of materials science and engineering. B., ISSN 2161-6221, 2020, vol. 10, no. 7/8, str. 125-133

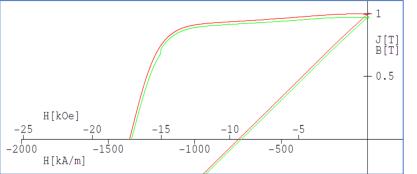


MaXycle – RESULTS: Coating of Nd-Fe-B magnets: removal

3-sp1

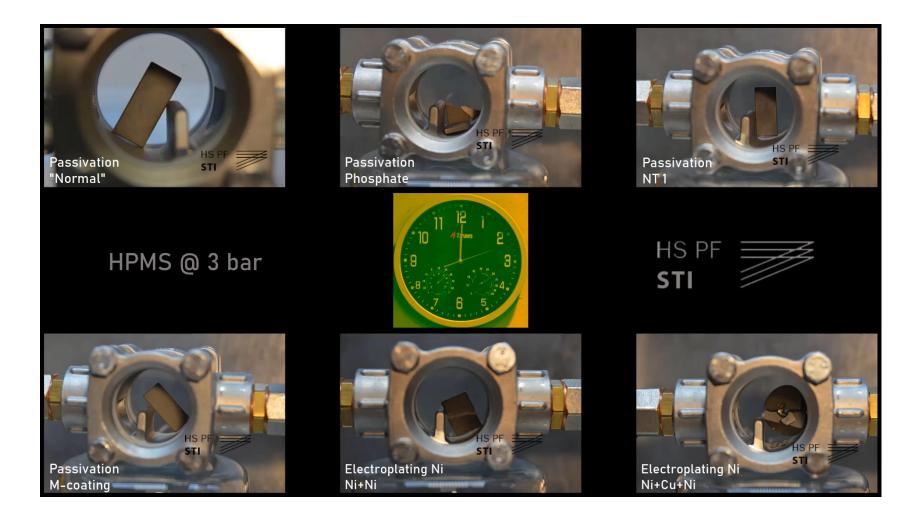




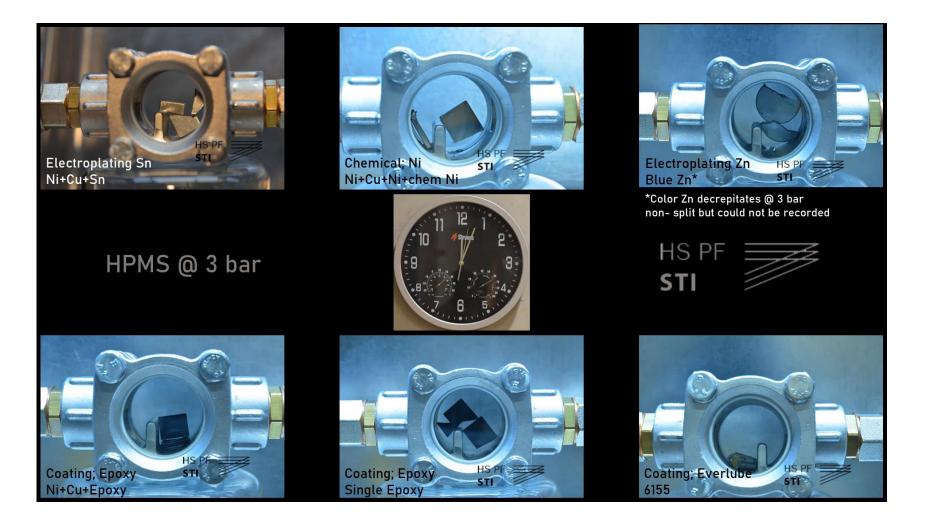


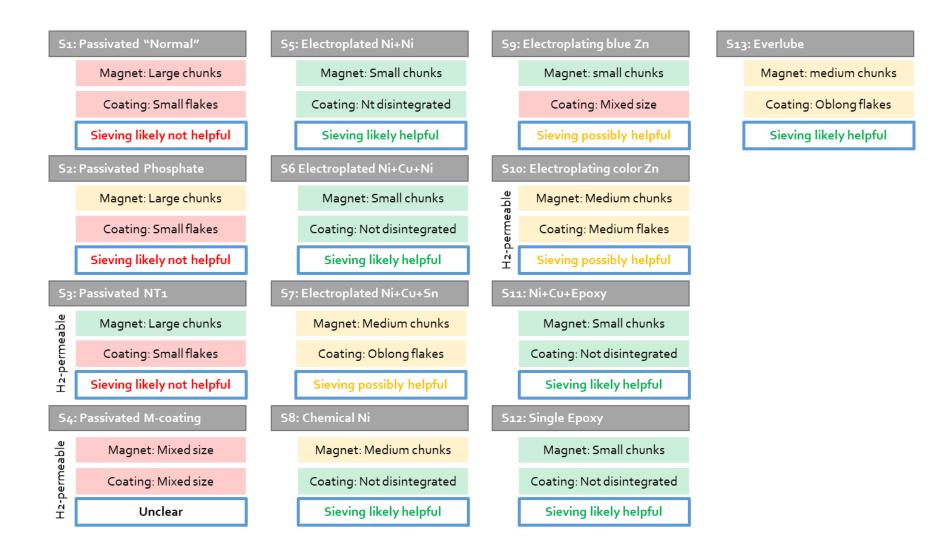
Microstructure of the Sample3 magnet

Ta	Table: EDX of the matrix phase in three samples						
	At%	Fe K	Co K	Pr L	Nd L	Dy L	
	Sam. 3	86,07	1,23	2,39	8,19	2,13	
	Sam. 5	85,75	1,44	2,50	8,100	2,20	
	Sam. 6	86,69	-	2,63	8,52	2,16	



The magnetic properties before (red) and after (green) the coating was removed. Ni-Cu-Ni coating removed after 2 hours in a 5% Br₂ solution


MaXycle – RESULTS: HPMS processing


MaXycle – RESULTS: HPMS processing

MaXycle – RESULTS: HPMS processing followed by sieving

Assumption, if sieving may separate magnetic- and coating material. Colours indicate if the observed properties are recycling friendly or not.

ERA-MIN 2 Final Conference, virtual, 18th-19th November, 2021

MaXycle – RESULTS: Labelling of Nd-Fe-B magnets

Example Magnet 2

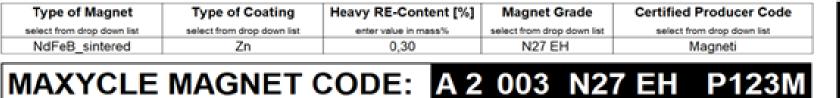
Example Magnet 1

1	production			х
	method	ро		
2	content of heavy RE	<1%		
		Dy	1-3%	
		0,	3-5%	
			>5%	х
3	coating	nickel		х
Ĭ		polymer		
		multi-layer		
	fixation	mechanical		х
4		glued (one side)		
1		glı		
		buried		
	access- ability	magnet only		х
5		easy to dismantle		
		moderate to dismantle		
		complicated to dismantle		
		<500 ppm		х
		500- 1.000 ppm		
6	oxygen	1.000- 3.000 ppm		
Ŭ	content	3.000- 5.000 ppm		
		5.000- 8.000 ppm		
		>8.000 ppm		
	availability p.a.	<1 t		
		1-5 t		
7		5-10 t		
		10-50 t		
			>50 t	х
		10800		

_				
	production	sintered polymer bonded		
	method			
2	content of heavy RE		<1%	
		Dy	1-3%	
			3-5%	
			>5%	х
	coating	nickel		х
3		zinc		
		polymer		
		multi-layer		
1	fixation	mechanical		
		glued (one side)		
		glued (2+ sides)		
		buried		
	access- ability	magnet only		
		easy to dismantle		
		moderate to dismantle		
		compli	cated to dismantle	
	oxygen content	<500 ppm		
		500- 1.000 ppm		
5		1.000- 3.000 ppm		
1		3.000- 5.000 ppm		
			00- 8.000 ppm	
			>8.000 ppm	
		<1 t		
	availability p.a.	1-5 t		х
6		5-10 t		
		10-50 t		
			>50 t	
		240		

Example Magnet 3

1	production	sintered		
	method	polymer bonded		
			<1%	
	content of heavy RE	Dy	1-3%	х
2			3-5%	
			>5%	
	coating	nickel		
3			zinc	х
		polymer		
		multi-layer		
4		mechanical		
	fixation	glued (one side)		
	incation	gli	ued (2+ sides)	х
		buried		
		magnet only		
	access-	easy to dismantle		
	ability	moderate to dismantle		
		complicated to dismantle		
		<500 ppm		
		500- 1.000 ppm		
5	oxygen	1.000- 3.000 ppm		
ĭ	content	3.000- 5.000 ppm		
		5.000- 8.000 ppm		
		>8.000 ppm		х
	availability p.a.	<1 t		
6		1-5 t		
		5-10 t		
		10-50 t		
			>50 t	
		0		


HPMS recycling factors for different lots of sintered NdFeB-type magnets

C. Burkhardt, A. Lehmann, B. Podmiljšak, S. Kobe, A systematic classification and labelling approach to support a circular economy ecosystem for NdFeB-type magnet. *Journal of materials science and engineering*. *B.*, ISSN 2161-6221, **2020**, vol. 10, no. 7/8, str. 125-133

MaXycle – RESULTS: Labelling od Nd-Fe-B magnets

MaXycle code-generator (left) and resulting DMC-code (right)

Various labeling after corrosion testing

C. Burkhardt, A. Lehmann, B. Podmiljšak, S. Kobe, A systematic classification and labelling approach to support a circular economy ecosystem for NdFeB-type magnet. *Journal of materials science and engineering. B.*, ISSN 2161-6221, **2020**, vol. 10, no. 7/8, str. 125-133

MaXycle - TEAM

Testimonial of the MaXycle project

CONCLUSIONS

It is envisaged to enable a **circular economy ecosystem** for NdFeB magnets in **renewable energy** and **e-mobility sectors**:

>By using a highly effective HPMS process for recycling.

This work was financed by ERA-MIN2 ID:142.

Project website: <u>www.maxycle.eu</u>

Thank you for your attention!

